Integral of cos(ax)e^(-x^2)

Problem 1. Show that

i) \displaystyle  \int_0^{\infty}x^{2n}e^{-x^2}dx=\frac{(2n)! \sqrt{\pi}}{2^{2n+1}n!} for all integers n \ge 0.

ii) \displaystyle \int_0^{\infty}\cos(ax) e^{-x^2} dx = \frac{\sqrt{\pi}}{2}e^{-\frac{a^2}{4}} for all real numbers a.

Solution. i) Let \displaystyle I_n:=\int_0^{\infty}x^{2n}e^{-x^2}dx. We showed here that \displaystyle I_0=\int_0^{\infty} e^{-x^2}dx=\frac{\sqrt{\pi}}{2}. Now, in I_n, we apply integration by parts with \displaystyle x^{2n-1}=u and \displaystyle xe^{-x^2}dx=dv to get \displaystyle I_n=\frac{2n-1}{2}I_{n-1} and thus

\displaystyle \begin{aligned} I_n=\frac{2n-1}{2} \cdot \frac{2n-3}{2}I_{n-2} = \cdots = \frac{2n-1}{2} \cdot \frac{2n-3}{2} \cdots \frac{1}{2} \cdot I_0 =\frac{(2n)!}{2^n(2n) (2n-2) \cdots 2}I_0 =\frac{(2n)! \sqrt{\pi}}{2^{2n+1}n!}.\end{aligned}

ii) Using i) and the Maclaurin series of \cos(ax), we have

\displaystyle \begin{aligned} \int_0^{\infty}\cos(ax) e^{-x^2}\ dx= \int_0^{\infty}\sum_{n=0}^{\infty}(-1)^n\frac{(ax)^{2n}}{(2n)!}e^{-x^2}dx=\sum_{n=0}^{\infty} \frac{(-a^2)^n}{(2n)!} \int_0^{\infty}x^{2n}e^{-x^2}dx\end{aligned}

\displaystyle \begin{aligned}=\sum_{n=0}^{\infty} \frac{(-a^2)^n}{(2n)!} \cdot \frac{(2n)! \sqrt{\pi}}{2^{2n+1}n!} =\frac{\sqrt{\pi}}{2}\sum_{n=0}^{\infty}\frac{(\frac{-a^2}{4})^n}{n!}=\frac{\sqrt{\pi}}{2}e^{\frac{-a^2}{4}}. \ \Box \end{aligned}

Unlike \displaystyle \int_0^{\infty}\cos(ax) e^{-x^2} dx, there’s no closed form for \displaystyle \int_0^{\infty}\sin(ax) e^{-x^2} dx but still there’s something nice and non-trivial that we can prove about the integral, as the following problem shows.

Problem 2. i) Show that

i) \displaystyle  \int_0^{\infty}x^{2n+1}e^{-x^2}dx=\frac{n!}{2} for all integers n \ge 0.

ii) \displaystyle \int_0^{\infty}\sin(ax) e^{-x^2} dx = e^{\frac{-a^2}{4}} \int_0^{\frac{a}{2}}e^{x^2}dx for all real numbers a.

Solution. i) Let \displaystyle J_n:=\int_0^{\infty}x^{2n+1}e^{-x^2}dx. See that \displaystyle J_0=\int_0^{\infty}xe^{-x^2}dx=\frac{1}{2}. Integration by parts with x^{2n}=u and xe^{-x^2}dx=dv gives

\displaystyle J_n=nJ_{n-1}=n(n-1)J_{n-2}= \cdots = n(n-1) \cdots 2 \cdot 1 \cdot J_0=\frac{n!}{2}.

ii) Using i) and the Maclaurin series of \sin(ax), we have

\displaystyle \begin{aligned} \int_0^{\infty}\sin(ax) e^{-x^2} dx= \int_0^{\infty}\sum_{n=0}^{\infty}(-1)^n\frac{(ax)^{2n+1}}{(2n+1)!}e^{-x^2}dx=a\sum_{n=0}^{\infty} \frac{(-a^2)^n}{(2n+1)!} \int_0^{\infty}x^{2n+1}e^{-x^2}dx\end{aligned}

\displaystyle \begin{aligned}=\frac{a}{2}\sum_{n=0}^{\infty} \frac{(-a^2)^{n}n!}{(2n+1)!}= \frac{a}{2}\sum_{n=0}^{\infty} \frac{(\frac{-a^2}{4})^n4^n}{(2n+1)\binom{2n}{n}n!}. \end{aligned} \ \ \ \ \ \ \ \ \ \ \ \ (*)

But we showed here that \displaystyle \int_0^{\frac{\pi}{2}} \sin^{2n+1}x \ dx = \frac{4^n}{(2n+1)\binom{2n}{n}}. Thus the substitution x=\cos t gives

\displaystyle \int_0^1 (1-x^2)^ndx = \int_0^{\frac{\pi}{2}} \sin^{2n+1}t \ dx=\frac{4^n}{(2n+1)\binom{2n}{n}}.

So, by (*),

\displaystyle \begin{aligned} \int_0^{\infty}\sin(ax) e^{-x^2} dx= \frac{a}{2}\sum_{n=0}^{\infty} \frac{(\frac{-a^2}{4})^n}{n!}\int_0^1(1-x^2)^n dx=\frac{a}{2}\int_0^1 \sum_{n=0}^{\infty} \frac{(\frac{-a^2(1-x^2)}{4})^n}{n!}dx\end{aligned}

\displaystyle=\frac{a}{2} \int_0^1 e^{\frac{-a^2(1-x^2)}{4}}dx =\frac{a}{2}e^{\frac{-a^2}{4}}\int_0^1 e^{\frac{a^2x^2}{4}}dx=e^{\frac{-a^2}{4}} \int_0^{\frac{a}{2}}e^{x^2}dx. \ \Box

Exercise 1. In Problem 2, ii), we showed that \displaystyle \frac{1}{2}\sum_{n=0}^{\infty}(-1)^n\frac{a^{2n+1}n!}{(2n+1)!}= e^{\frac{-a^2}{4}} \int_0^{\frac{a}{2}}e^{x^2}dx, for all real numbers a. Here’s another way to prove it. Let

\displaystyle f(a):=\frac{1}{2}e^{\frac{a^2}{4}}\sum_{n=0}^{\infty}(-1)^n\frac{a^{2n+1}n!}{(2n+1)!}- \int_0^{\frac{a}{2}}e^{x^2}dx.

Show that f'(a)=0 and conclude that f(a)=0.

Exercise 2. Evaluate \displaystyle \lim_{a\to\infty} \int_0^{\infty} \sin(ax)e^{-x^2}dx and \displaystyle \lim_{a\to\infty} a \int_0^{\infty} \sin(ax)e^{-x^2}dx.

Exercise 3. Show that

\displaystyle \int_0^{\infty}\cos(ax)e^{-bx^2} \ dx=\frac{1}{2}\sqrt{\frac{\pi}{b}}e^{-\frac{a^2}{4b}}

for all real numbers a,b with b > 0.

Leave a comment